Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism.
نویسندگان
چکیده
Previous physiological studies have revealed changes in firing rates and synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of Parkinson's disease. Several primate and human studies have demonstrated that dopamine replacement therapy (DRT) reverses the changes in the pallidal firing rates; however, the effects of DRT on pallidal synchronization have never been explored. To do so, we recorded the simultaneous activity of pallidal neurons of a vervet monkey before and after induction of severe parkinsonism by systemic MPTP treatment. We subsequently recorded the pallidal activity before and after daily administration of oral DRT. We extended the time scale of our correlation studies to +/-5 sec to allow detection of long-duration synchronized neuronal activity. After MPTP treatment, firing rates decreased in the external segment of the globus pallidus (GP(e)) and increased in the internal segment (GP(i)). A reversal of these rate changes occurred during the "on" periods of DRT. The percentage of correlated pairs increased from 16.7% in the normal state to 46.9% after MPTP treatment and was restored to nearly normal values (25% correlated pairs) under the influence of DRT. These changes in rate and correlation were observed at both the population level and at the level of units recorded continuously before, during, and after the clinical transition from "off" to "on" periods. We conclude that changes in both pallidal discharge rates and synchronization are correlated with the clinical manifestations of parkinsonism and its pharmacological treatment.
منابع مشابه
Brief Communication Dopamine Replacement Therapy Reverses Abnormal Synchronization of Pallidal Neurons in the 1-Methyl-4-Phenyl- 1,2,3,6-Tetrahydropyridine Primate Model of Parkinsonism
Previous physiological studies have revealed changes in firing rates and synchronization of pallidal neurons in the 1-methyl4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of Parkinson’s disease. Several primate and human studies have demonstrated that dopamine replacement therapy (DRT) reverses the changes in the pallidal firing rates; however, the effects of DRT on pallidal synchroni...
متن کاملReinforcement Driven Dimensionality Reduction as a Model for Information Processing in the Basal Ganglia
........................................................................1-2 Introduction .................................................................... 3-8 Results ............................................................................ 9-66 I. Reinforcement driven dimensionality reduction – a model for information processing in the basal ganglia .........................................
متن کاملDopamine replacement therapy does not restore the full spectrum of normal pallidal activity in the 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine primate model of Parkinsonism.
Current physiological studies emphasize the role of neuronal oscillations and synchronization in the pathophysiology of Parkinson's disease; however, little is known about their specific roles in the neuronal substrate of dopamine replacement therapy (DRT). We investigated oscillatory activity and correlations throughout the different states of levodopa-naive parkinsonism as well as "Off-On" an...
متن کاملA primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
A syndrome similar to idiopathic parkinsonism developed after intravenous self-administration of an illicit drug preparation in which N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (NMPTP) might have been responsible for the toxicity. In the present study we show that intravenous administration of NMPTP to the rhesus monkey produces a disorder like parkinsonism (akinesia, rigidity, postural tremo...
متن کاملMetabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys.
Degeneration of the dopaminergic nigrostriatal system and of noradrenergic neurons in the locus coeruleus are important pathological features of Parkinson's disease. There is an urgent need to develop therapies that slow down the progression of neurodegeneration in Parkinson's disease. In the present study, we tested whether the highly specific metabotropic glutamate receptor 5 antagonist, 3-[(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2002